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Abstract—Stress singularities at grain triple junctions due to freely sliding grain boundaries in
idealized two-dimensional single-phase polycrystals have been analyzed. The shear stress is assumed
to be completely relaxed along the grain boundaries while the normal stress is allowed to be fully
transmitted. The singularity exponent was found to be independent of the elastic constants of the
grains, and for some triple junction configurations, super-singularities (i.e., stronger than the
standard —0.5 as found at the tip of a crack in homogeneous material) were obtained. Interestingly,
for most geometrical configurations, the solution structure indicates a fixed mode near the triple
junction, irrespective of the far-field load combination.

1. INTRODUCTION

Modeling the nucleation of cracks and cavities in engineering polycrystals requires a
quantitative description of the stress and strain fields at grain triple junctions or at the
apexes of grain boundary particles. In high temperature alloys loaded above 0.47,, the
stresses are further concentrated due to freely sliding grain boundaries. By prescribing a
linear viscous behavior for the sliding grain boundaries in a power-law creeping alloy, Lau
et al. (1983, 1984) calculated the stress concentrations at apexes of pinning grain boundary
particles and triple junctions of 2D polycrystals with hexagonal grains. The largest singu-
larity value of —0.225 at the apex of a square particle and that of —0.321 at the grain triple
junction were obtained for an alloy with an effective creep exponent of 3.

The purpose of this note is to provide stress singularities at asymmetric two-dimensional
triple grain junctions with random orientations of the grain boundaries, albeit by limiting
the deformation in each grain to within their elastic limits. It is further assumed that all
grains are isotropic and made out of the same material with elastic modulus £ and Poisson’s
ratio v. The boundaries are allowed to slide freely with fully relaxed shear stresses, but still
allowing the normal traction to be completely transmitted across them. The results provided
here can be useful for understanding the deformation of ceramics and other high tem-
perature alloys at relatively high strain rates where the cracks and voids can nucleate under
short-range singular stresses before they are relaxed by the creeping grains. In fact, we
recently (Picu and Gupta, 1995a) documented such crack nucleation events from triple
junctions of columnar freshwater ice due to grain boundary sliding when the samples were
loaded under across-column biaxial compression at a strain rate of 1077 s~' at —10°C.
Interestingly, even with such local-scale inelastic dissipations, the overall behavior of the
polycrystal remained brittle with a sharp termination in its linear compression stress—strain
curve. Although a simple model that assumed the sliding grain boundary as an effective
mode 1I crack with a sliding resistance 1, was formulated to explain the observed cracking
events under compression loading (Picu and Gupta, 1995b), the detailed structures of the
stress and strain fields at the triple junctions were not analyzed. The same is true for
simultaneous sliding of two or more boundaries meeting at a junction. The present paper
provides the structure of the stress field at such triple junctions to within a scaling constant
k, the generalized stress intensity factor.
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2. ANALYSIS

Consider the geometry of Fig. 1. The grain boundary positions are defined by the
angles «; and o,. The three grains are considered to be made from the same elastic material
defined by the Young’s modulus E and the Poisson ratio v. The stress field a;; very close to
the triple junction in each grain is of the separable form, and can be expressed in a polar
coordinate system centered at the triple junction as

o,(r,0) = krif (), )]

where 7 is the singularity exponent, f;(0) are angular functions and k is a scaling constant.
The boundary conditions are defined by the continuity of the normal displacement u, and
stress g, across each boundary in Fig. 1, whereas, consistent with the assumption of freely
sliding grain boundaries, the shear stress along each interface is zero.

The problem posed above is directly amenable to the standard Williams-type singu-
larity analysis (Williams, 1952) which provides y and f;(6) but not the amplitude factor &,
for which the full problem including the external loading must be considered. In the local
field analysis, y is obtained as the eigenvalue of a 12 x 12 system of equations that result
upon the use of the above boundary conditions. The exponent y was searched numerically
in the domain —1 < y < 0, since y > 0 leads to non-singular fields, whereas y < — 1 leads
to physically impossible strain energy densities in the continuum. Interestingly, the elastic
constants E and v do not enter the eigenvalue problem. Thus, the eigenvalues and the
associated eigenvectors depend only on the two parameters o, and o, defining the geometry
of the triple junction. The solution structure allows for two negative eigenvalues y, and y,,
each corresponding to only one eigenvector instead of two, as observed for the standard
crack tip fields. The singular part of the local stress field can be written as

0,i(r,0) = k,rf[(0) +k,r2f 5(6). 2)

Near the triple junction, however, only the most singular term dominates. Unlike most
standard fracture problems, £ (6) and f;(6) here represent a fixed mode -variation which
depends upon the geometrical parameters «, and «,, and are independent of the far-field
loading combination. This behavior was also observed by He and Hutchinson (1989) for
cracks impinging at an oblique angle to an interface between two dissimilar isotropic elastic
solids. As suggested by these authors, the dominance zone for such a field is rather limited.

Crp="0

Grg=0

Fig. 1. Details of the geometry at a grain triple junction.



Figure 2a shows the contours of the singularity exponent y in the -, plane for the
case where all grain boundaries are allowed to slide. When drawing the singularity map,
several symmetries of the geometry in Fig. 1 have been considered. As discussed below it is
only necessary to consider the geometrical configurations represented within the triangular
region BCD, since there exists a regular mirror symmetry about the line BD, and a specific
r symmetry about the line EB where only the lines parallel to the «, axis are reflected

mirro
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by the mirror EB. The reasons for these symmetries are discussed below.
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Fig. 2. (a) Contours of the singularity exponent y in the a; and «, plane. The upper region of the
map BCD shows the singularities corresponding to the first eigenvalue (y,), while the lower region
BDE corresponds to the second eigenvalue (y,). The values of v, and y, in other configurations can
be simply obtained by using the regular mirror symmetry along the line BD, and special symmetries
along the lines BC and BE where only the lines parallel to the &, and «, axes are reflected in a mirror-
like fashion, respectively. NS marks a region corresponding to nonsingular configurations. At point
B, the value in parentheses represents the singularity corresponding to a double eigenvalue. All
singularity exponents are independent of the elastic constants. (b) Contours of the leading singularity
exponent y = max (y,,7.) in the o;—n, plane. y assumes its smallest value for the symmetric con-

figuration defined by «, = 79°.
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Fig. 3. A schematic representation of the various symmetries expected for the singularity exponent
in the @,—a;, plane. These essentially result from the invariance of the grain configuration upon a
180° rotation of the geometry about the grain boundaries MN, MO and MP in Fig. 1.

To cover all possible geometrical configurations in Fig. 1, «, should take values in the
range 0° < «; < 360°, whereas a, varies in the interval o, < o, < 360°. This represents the
region AFD above the line AF defined by o, = a, in Fig. 3. It can be seen from Fig. 1 that
a 180° rotation of the assembly about the grain boundary MN would preserve the magnitude
of the angles between the boundaries, and should yield an identical geometrical configur-
ation. If «}, a5 are the corresponding angles for the boundaries MO and MP in the rotated
configuration, they will be related to their unrotated counterparts through: a; = 2z —a5)
and a5 = (2n—a,). This represents a mirror symmetry about the line DG in Fig. 3. The
above argument also holds for a 180° rotation about the grain boundary MO, and for this
case, with respect to the coordinate frame in Fig. 1, the new angles a, «, are related to «,
and o, via: o] =a; and o) = (2n—a, +a,). This represents a special mirror symmetry
along the line o, = n+ /2, which is plotted as line EF in Fig. 3. The word “special” is used
to indicate that only those lines that are parallel to the «, axis would reflect in a mirror-like
fashion with respect to the line EF. A similar special mirror symmetry exists along the line
AC in Fig. 3, which results through a 180° rotation of the geometry in Fig. 1 around the
grain boundary MP. Here, only the lines parallel to the «, axis reflect in a mirror-like
fashion with respect to the line AC.

Based on the above, it appears that one needs to consider only the region BCD to
generate results for all geometrical possibilities. As discussed earlier, two eigenvalues were
obtained for each geometrical configuration («,, %,). To represent the solutions in a compact
form, we show the first set of eigenvalues in the triangular region BCD, whereas the second
one in the pair is shown in the region BDE. The data at points E, D, and C have no physical
meaning since the corresponding geometries cannot be in equilibrium under an applied
load. Upon a quick glance at the singularity map, it is evident that there are many
configurations that yield super-singularities, i.e. those greater than the standard —0.5 as
obtained at the tip of a crack in homogeneous media.

As discussed earlier, only the strongest singularity characterizes the stress field close
to the triple junction. Figure 2b shows the leading eigenvalue y ( = max (y,, y,)) for all
configurations explored in Fig. 2a. While in most cases y is a super-singularity, for geo-
metries defined by 60° < o; < 100° and 240° < «, < 330°, singularities weaker than —0.5
are obtained, with a minimum value of —0.21 corresponding to the symmetric case with
o, = 79°.

Figures 4(a) and (b) show the eigenvectors associated with the eigenvalues y, and
y2, respectively, corresponding to the geometrical configuration defined by «; = 80° and
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Fig. 4. Eigenvectors associated with the eigenvalues y, (a) and y, (b) for the geometrical configuration
defined by o, = 80° and a, = 280°. Since only one field is obtained for each eigenvalue, a fixed mode
near the triple junction, irrespective of thg gpp]ied far field load. is implied.

o, = 280°. The ordinate in Fig. 4 is normalized with respect to the absolute maximum of
Joe(0). Interestingly, for symmetric grain configurations (as considered in Fig. 4), it was
found that each of the two eigenvectors are symmetric and antisymmetric with respect to a
mirror-line of the configuration. For the geometry shown in Fig. 4, this line is located at
0 = 180° with Fig. 4(a) containing the symmetric and Fig. 4(b) depicting the antisymmetric
field. This relationship between the two is surprising, and of course is of a very different
nature than the double eigenfields (bearing the same relationship) obtained for the homo-
geneous crack problem, where a linear combination of the two satisfies the equilibrium
with the applied far-field loads.

The normal stress across the grain boundaries is of interest for addressing the issue of
crack nucleation, and as shown in Fig. 4, the stress can become tensile to support the
nucleation of cracks. For almost all configurations, the maximum tensile gy, stress of the
symmetric field is obtained along one of the bisectors of the three angles spanned by the
grain boundaries, whereas for the antisymmetric field g4 is maximum along the grain
boundaries. A quantitative evaluation of the nucleation process, however, requires the
calculation of the amplitude factors &, and k, in eqn (2) (Picu ez al., 1994).
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Fig. 5. The singularity exponents y, and y, as a function of &; when only two boundaries are allowed
to slide. The case of &, = 0, corresponds to a single sliding grain boundary, for which y, = —0.5.

An exception to the above fixed mode eigenfields was the case represented by the
fully-symmetric grain configuration with a, = 120° and «, = 240°. For this case, a double
eigenvalue of —0.45 was obtained which yielded two linearly independent eigenvectors,
each of which can be taken as symmetric and antisymmetric with respect to the mirror line
for the grain configuration. Here, the relationship between the two fields is akin to that for
the standard crack problem.

When only two favorably oriented grain boundaries are activated by the applied shear
stress and are free to slide, all possible geometries can be obtained in terms of only one
geometrical parameter o, measured with respect to a coordinate frame whose x,-axis is
aligned with one of the sliding grain boundaries. This is depicted in the inset of Fig. 5. As
before, two eigenvalues with each corresponding to only one eigenvector were obtained.
Figure 5 shows the variation of the singularity exponents y, and y, as a function of «a,
whereas Figs 6(a) and (b), respectively, show the associated eigenfields for y, and y, for a
specific grain configuration defined by «, = 140°. For these geometries, the two eigenfields
are antisymmetric and symmetric with respect to the line that bisects the two sliding
boundaries. As for the case with three sliding boundaries, this relationship between the two
fields is different from that obtained in the standard fracture problems. For the case of
o; = 0, corresponding to only one sliding grain boundary, an eigenvalue of —0.5 was
obtained, since the sliding boundary behaves essentially as a mode II crack.

4. CONCLUSIONS

Stress singularities at two-dimensional grain triple junctions for the case where one,
two and all three grain boundaries were allowed to slide freely, were obtained. The defor-
mation within each grain was limited to isotropic elastic behavior. The key features of the
stress field involve not only the super-singularities for certain grain configurations, but also
the associated eigenfields indicate a fixed mode near the triple junction.

The utility of the current results lies in addressing the problem of crack nucleation in
polycrystals deformed at high homologous temperature, but loaded at relatively high strain
rates. Under such conditions, it is possible to nucleate cracks under the short-range stresses
before they are relaxed due to creep. Such events were documented by us in ice polycrystals
(Picu and Gupta, 1995a). The reader is referred to Picu er al. (1994) to see how the
information given here can be synthesized to study quantitatively the problem of crack
nucleation.
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Fig. 6. Eigenvectors of the antisymmetric and symmetric fields associated with the eigenvalues
y. = —0.33 (a) and 7. = —0.76 (b) for the geometrical configuration defined by «; = 140°. The
eigenfields are normalized with respect to the absolute maxima of the fy, field.
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